Advanced Computer Programming
[Lecture 02]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University
Spring 1397-98

Variables

When your program carries out computations, you will want to
store values so that you can use them later.

@ In a Java program, you use variables to store values.

Example of variable declaration:

@ int number = 6;

Variables

When your program carries out computations, you will want to
store values so that you can use them later.

@ In a Java program, you use variables to store values.

Example of variable declaration:

@ int number = 6;

Definition
A variable is a storage location in a computer program. Each variable
has a type, name, and holds a value.

Variables

Syntax
Variable declaration:

@ typeName variableName = value;, or

@ typeName variableName;

@ You usually specify an initial value.
@ You also specify the type (size) of its values.
e Java supports quite a few data types: numbers, text strings, files,
dates, and many others.
@ After you have declared and initialized a variable, you can use it
int number = 10;
System.out.println (number) ;
int product = 4 * number;

Variables

Real-world example: Parking space

Variables

Some programming examples:

Table 1 Variable Declarations in Java
Variable Name Comment
int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a fixed value. (Of course, cans and
bottles must have been previously declared.)

® bottles = 1; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable —see Section 2.1.4.
® int volume = "2"; Error: You cannotinitialize a number with a string.
int cansPerPack; Declares an integer variable without initializing it. This can be a

cause for errors—see Common Error 2.1 on page 37.

int dollars, cents; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

Type of Variables

Type = Size + Operations

Number Types

Two most commonly used number types:
@ int: for integer numbers.
int number = 10;

@ double: for floating-point numbers.
double number2 = 10.55;

Number Types

Two most commonly used number types:

@ int: for integer numbers.
int number = 10;

@ double: for floating-point numbers.
double number2 = 10.55;

Definition
Numeral value that occurs in a Java program is called a humber
literal.

int number = 10;

double number?2 10.55;

Number

0.5
1.0

1E6

2.96E-2

® 100,000
® 31/2

Type
int
int
int

doubTe

double

double

double

Number Literals

Table 2 Number Literals in Java
Comment
An integer has no fractional part.
Integers can be negative.
Zero 1s an integer.
A number with a fractional part has type doubTe.
An integer with a fractional part .0 has type doube.

A number in exponential notation: 1 x 10° or 1000000.
Numbers in exponential notation always have type doubTe.

Negative exponent: 2.96 x 1072 =2.96/100 = 0.0296
Error: Do not use a comma as a decimal separator.

Error: Do not use fractions; use decimal notation: 3.5

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

@ Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

@ Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

@ Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

@ Variable names must start with a letter or the underscore ()

character, and the remaining characters must be letters,
numbers, or underscores.

@ Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

@ Variable names are case sensitive.

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

@ Variable names must start with a letter or the underscore ()

character, and the remaining characters must be letters,
numbers, or underscores.

@ Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

@ Variable names are case sensitive.

@ You cannot use reserved words such as double or int as hames
(Appendix C).

Variable Name

canVolumel

® can volume
® double
© 1w/l

Variable Name

Table 3 Variable Names in Java
Comment
Variable names consist of letters, numbers, and the underscore character.

In mathematics, you use short variable names such as x or . This is legal in Java, but not
very common, because it can make programs harder to understand (see Programming Tip
2.1 on page 38).

Caution: Variable names are case sensitive. This variable name is different from canvolume,
and it violates the convention that variable names should start with a lowercase letter.

Error: Variable names cannot start with a number.
Error: Variable names cannot contain spaces.
Error: You cannot use a reserved word as a variable name.

Error: You cannot use symbols such as / or.

The Assignment Statement

You use the assignment statement to place a new value into a
variable. That value is stored in the variable,
overwriting its previous contents.

variableName = wvalue;
(direction is important)

The Assignment Statement

You use the assignment statement to place a new value into a
variable. That value is stored in the variable,
overwriting its previous contents.

variableName = wvalue;
(direction is important)

Note
Assignment is different from variable declaration;

@ Variable declaration (an instruction to create a new variable of an
specific type)
int number = 10;

@ Assignment statement (an instruction to replace the contents of
the existing variable with another value)
number = 100;

The Assignment Statement

Syntax wvariableName = value;

This is an initialization doubTe total = 0;
of a new variable,
NOT an assignment.

This is an assignment.

total = bottles * BOTTLE_VOLUME;

The nawe of a previously . ,
defined variable The expression that replaces the previous valve
total = total + cans * CAN_VOLUME;

The same nawme
can occur on both sides.
See Figure 1.

Constants

Definition
When a variable is defined with the reserved word final, its value can
never change, so it is a constant.

Constants are commonly written using CAPITAL letters to be
distinguished.

Syntax 2.3 Constant Declaration

Syntax final typeName variableName = expression;

The final reserved word ___ final double CANVOLUME = 0.355; // Liters in a 12-ounce can

indicates that this value ~

cannot be wodified. This comment explains how
the value for the constant

Use uppercase letters for constants.
was deterwined.

Comments

Definition

As your programs get more complex, you should add comments,
explanations for human readers of your code. The compiler

does not process comments at all.

Types of commenting:
@ Line:
@ Block:

{

CONOVTHAWN =

NNNNN = = = ool ol ol ol
BAWN=QOVOONOUVNIAWN=O

25 1}

=

Example

This program computes the volume (in liters) of a six-pack of soda
cans and the total volume of a six-pack and a two-liter bottle.

public class Volumel

public static void main(String[] args)

{
int cansPerPack = 6;
final double CAN_VOLUME = 0.355; // Litersin a 12-ounce can
double totalVolume = cansPerPack * CAN_VOLUME;

System.out.print("A six-pack of 12-ounce cans contains ");
System.out.print(totalVolume);

System.out.printin(" Titers.");

final double BOTTLE_VOLUME = 2; // Two-liter bottle

totalVolume = totalVolume + BOTTLE_VOLUME;

System.out.print("A six-pack and a two-liter bottle contain ");

System.out.print(totalVolume);
System.out.printin(" Titers.");

Common Error

Using Undeclared or Uninitialized Variables

@ You must declare a variable before you use it for the first time.
double canVolume = 12 * literPerOunce; // ERROR: TiterPerOunce is not yet declared
double TiterPerOunce = 0.0296;

@ A related error is to leave a variable uninitialized.
int bottles;

int bottleVolume = bottles * 2; // ERROR: bottles is not yet initialized

Type

int

byte

short
Tong

double

float

char

Numeric Types in Java
Table 4 Java Number Types

Description

The integer type, with range
—2,147,483,648 (Integer.MIN_VALUE) . ..2,147,483,647
(Integer.MAX_VALUE, about 2.14 billion)

The type describing a single byte consisting of 8 bits,
with range—128...127

The short integer type, with range -32,768 ... 32,767
The long integer type, with about 19 decimal digits

The double-precision floating-point type,

with about 15 decimal digits and a range of about +10°%

The single-precision floating-point type,
with about 7 decimal digits and a range of about +10

The character type, representing code units in the
Unicode encoding scheme (see Random Fact 2.2)

Size
4 bytes
1 byte

2 bytes
8 bytes
8 bytes

4 bytes

2 bytes

Problems with Binary Representation

Overflow
Because numbers are represented in the computer with a limited

number of digits, they cannot represent arbitrary numbers.
int fiftyMillion = 50000000;
System.out.println(100 * fiftyMillion); // Expected: 5000000000

output: 705032704

Problems with Binary Representation

@ Overflow

Because numbers are represented in the computer with a limited
number of digits, they cannot represent arbitrary numbers.

int fiftyMillion = 50000000;

System.out.println(100 * fiftyMillion); // Expected: 5000000000

output: 705032704

Roundoff

As with decimal numbers, you can get roundoff errors when
binary digits are lost.

double price = 4.35;

double quantity = 100;

double total = price * quantity; // Should be 100 * 4.35 = 435
System.out.printIn(total); // Prints 434.99999999999999

Arithmetic Operators

@ All of the four basic arithmetic operators are available here:
addition (+)

@ subtraction (-)

e multiplication (*)

e division (/)

Definition

The combination of variables, literals, operators, and/or method calls is
called an expression.

eg.a+b /2

Arithmetic Operators

Notes

@ As in regular algebraic notation, multiplication and division have a
higher precedence than addition and subtraction.

@ Parentheses are used to indicate in which order the parts of the
expression should be computed.

@ Mixing integers and floating-point values in an arithmetic
expression yields a floating-point value.

20

Increment and Decrement
Changing a variable by adding or subtracting 1 is so common that
there is a special shorthand for it;
@ Increment: ++ operator
counter++; equals to counter = counter + 1;
@ Decrement: —- operator
counter--; equals to counter = counter - 1;

counter = 3 —»*»—\\\

counter + 1

(2]

counter = 4
counter + 1

4

~ o

2

Combining Assignment and Arithmetic

In Java you can combine arithmetic and assignment:

@ counter
counter

@ counter
counter

@ counter
counter

@ counter
counter

= counter + 10; can be written as:

+= 10;

-= 10;

*= 10;

= counter / 10; can be written as:

/= 10;

counter - 10; can be written as:

counter * 10; can be written as:

22

Integer Division and Remainder

@ Division works as you would expect, as long as at least one of the

numbers involved is a floating-point number.

7.0/4 = 7/4.0 = 7.0/4.0 = 1.75

If both numbers are integers, then the

result of the division is always an integer, with the

remainder discarded.

7/4 =1

If you are interested in the remainder only, use the % operator.
7% 4 =3

23

Variable Swapping

Q&A
Q: How can we swap the values of two variables?

24

Variable Swapping

Q&A

Q: How can we swap the values of two variables?
A: Using a temporary variables;

int a = 10;
int b = 20;
int ¢ = a;

a = Db;

b =c;

24

Variable Swapping

Q&A

Q: How can we swap the values of two variables?
A: Using a temporary variables;

int a = 10;
int b = 20;
int ¢ = a;
a = Db;
b =c;

Q: Can we swap integer values without a temporary variable?
A: Your task!

24

Power and Roots

@ In Java, there are no symbols for powers and roots.

@ To take the square root of a number, you use the Math.sqrt
VX equals to Math.sqgrt (x)

@ To compute x" you write Math.pow (x,n).
@ In Java you should write linear mathematic expressions. e.g.

b x (l—i—ifo)”
should be written as
b * Math.pow(l + r / 100, n)

25

Method
Math.sqrt(x)
Math.pow(x, y)
Math.sin(x)
Math.cos(x)
Math.tan(x)
Math. toRadians(x)
Math. toDegrees(x)
Math.exp(x)
Math.Tog(x)
Math.70g10(x)
Math. round (x)
Math.abs(x)
Math.max(x, y)

Math.min(x, y)

The Math Library

Returns
Square root of x (= 0)
x” (x>0,0orx=0and y >0, orx<0and yis an integer)
Sine of x (x in radians)
Cosine of x
Tangent of x
Convert x degrees to radians (i.e., returns x - 71/180)
Convert x radians to degrees (i.e., returns x - 180/7)
o
Natural log (In(x), x > 0)
Decimal log (log; (x), x > 0)
Closest integer to x (as a Tong)
Absolute value | x|
Thelarger of x and y
The smaller of x and y

26

Converting Floting-Point Numbers to Integers

You have a value of type double that you need to convert to the type
int.
@ Itis an error to assign a floating-point value to an integer.

double balance = total + tax;
int dollars = balance; // Error: Cannot assign double to int

@ The compiler disallows this assignment because it is potentially
dangerous:

e The fractional part is lost.
e The magnitude may be too large.

27

Converting Floting-Point Numbers to Integers

You have a value of type double that you need to convert to the type
int.

@ Itis an error to assign a floating-point value to an integer.
doubTe balance = total + tax;

int dollars = balance; // Error: Cannot assign double to int
@ The compiler disallows this assignment because it is potentially
dangerous:
e The fractional part is lost.
e The magnitude may be too large.

@ You must use the cast operator to convert a convert

floating-point value to an integer.
double balance = total + tax;
int dollars = (int) balance;

27

Cast Operator

Syntax (typeName) expression

This is the type of the expression after casting.

(int) (balance * 100) N
Use parentheses here if
These parentheses are a / the cast is applied to an expression
part of the cast operator. with arithmetic operators.

28

Input and Output

Output
@ System.out.println(arg);
@ System.out.print (arqg);
Input
@ An Scanner must be created first
Scanner in = new Scanner (System.in);

@ To use Scanner, the package java.util.Scanner must be
imported
import java.util.Scanner;

@ Use next... methods to read inputs, e.g.
int number = in.nextInt();

29

Reading Input

Include this line so you can

use the Scanner elass.
T import java.util.Scanner;

Create a Scanner object
to read keyboard input. Scanner in = new Scanner(System.in);

Display a prowpt in the console window. .)
play a prowpt T/ System.out.print("Please enter the number of bottles: ");

int bottles = in.nextInt();
Define a variable to hold the input valve. — \
The program waits for user input,
then places the input into the variable.

Pon't use printin here.

30

Formatted Output

When you print the result of a computation, you often want to control
its appearance. For example:
@ Rounding to a number of significant digits.
(System.out.printf ("%.2f", price);)
@ Specifying a field width.
(System.out.printf ("$10.2f", price);)

31

Formatted Output

When you print the result of a computation, you often want to control
its appearance. For example:
@ Rounding to a number of significant digits.
(System.out.printf ("%.2f", price);)
@ Specifying a field width.
(System.out.printf ("$10.2f", price);)

Use the print £ method and format specifiers to specify how
values should be formatted,

@ %...f, formating a floating-point number.
@ %...d, formating an integer number.
@ %...s, formating a string.

31

Format String
g
o5 g

"Quantity:%5d"

nopEn

"%. 2"

"%7.2f"
o

"%d %.2f"

Format Specifiers

Table 8 Format Specifier Examples

Sample Output Comments
24 Use d with an integer.
24 Spaces are added so that the field width is 5.
Quantity: 24 Characters inside a format string but outside a

format specifier appear in the output.

1.21997 Use f with a floating-point number.

1.22 Prints two digits after the decimal point.
1.22 Spaces are added so that the field width is 7.

Hello Use s with a string.

24 1.22 You can format multiple values at once.

32

Format String

Definition

A format string is a string contains format specifiers and

literal characters. Any characters that are not format specifiers are
printed verbatim.

Examples:
@ System.out.printf ("Price per liter:%10.2f", price);

Price per liter: 1.22
@ System.out.printf ("Quantity: %d Total: %10.2f",

quantity, total);

The printf wethod does not

width 10 start a new line here.
A
Quantity: 2 4 T ot al 17 .29
No field width was specified, Two digits after
0 ho padding added the decimal point

33

Strings
Many programs process text, not numbers.

Definition
A string is a sequence of characters, characters like letters, numbers,
punctuation, spaces, and so on.

34

Strings
Many programs process text, not numbers.

Definition
A string is a sequence of characters, characters like letters, numbers,
punctuation, spaces, and so on.

Declaring a variable that can hold strings:

String name = "Harry";

@ String variable: A variable that can hold a string.
@ String literal: Character sequences enclosed in quotes.

@ Length of string: The number of characters in a string.
int n = name.length();

@ Empty string: A string of length zero ("").

34

Concating Strings

In Java, you use the + operator to concatenate two strings.

For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + 1Name;

35

Concating Strings

In Java, you use the + operator to concatenate two strings.

For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + 1Name;

results in the string
"HarryMorgan"

35

Concating Strings

In Java, you use the + operator to concatenate two strings.

For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + 1Name;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + 1Name;

35

Concating Strings

In Java, you use the + operator to concatenate two strings.

For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + 1Name;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + 1Name;

results in the string
"Harry Morgan"

35

Concating Strings

@ When the expression to the left or the right of a + operator is a
string, the other one is automatically forced to become a string as
well.

String jobTitle = "Agent";

int employeeld = 7;

String bond = jobTitle + employeeld;
bond’s value will be "Agent7".

@ concatenation is very useful for reducing the number of
System.out.print instructions.
System.out.println("The total is " + total);

36

String Input

You can read a string from the console:
String name = in.next();
where in is a scanner.

Note

When a string is read with the next method, only one word is read.

37

Escape Sequences

Definition
Escape sequences are used to represent certain special characters

within string literals and character literals.

38

Escape Sequences

Definition
Escape sequences are used to represent certain special characters
within string literals and character literals.

Common examples:

@ Include a quotation mark:
"He said \"Hello\""

@ Include a backslash:
"C:\\Temp\\Secret.txt"

@ Printing a newline (useful with print£):
System.out.print ("*\n**\n***\n");

Prints the characters
*

* %

* k%

38

Strings and Characters

@ Strings are sequences of characters, each has a position starting
from O to its length - 1.
@ In Java, a character is a value of the type char.
@ Character literals are delimited by single quotes, and you should
not confuse them with strings.
e 'H’is a character, a value of type char.
e "H”is a string containing a single character, a value of type
String.

39

Strings and Characters

Strings are sequences of characters, each has a position starting
from 0 to its length - 1.
In Java, a character is a value of the type char.
Character literals are delimited by single quotes, and you should
not confuse them with strings.

e 'H’is a character, a value of type char.

e "H”is a string containing a single character, a value of type

String.
The charAt method returns a char value from a string.
String name = "Harry";

char start = name.charAt (0);
char last = name.charAt (4);

39

Substrings

@ Once you have a string, you can extract substrings by using the
substring method.
str.substring(start, pastEnd);
@ Example:
String greeting = "Hello, World!";
String sub = greeting.substring(0, 5);
// sub is "Hello"

He Il 1 o, W o r 1 d!
2 3 4 5 6 7 8 9 10 11 12

40

string
str =

System.

+

team =

String
String

Statement
str = "Ja";
str + "va";

out.printin("Please
enter your name: ");

49 + "ers

first = in.next();
Tast = in.nextQ;

(User input: Harry Morgan)

String

greeting = "H & S";

int n = greeting.length();

String

str = "Sally";

char ch = str.charAt(1);

String
String

String
String

String
String

String
str

str = "Sally";

str2 = str.substring(1, 4);
str = "Sally";

str2 = str.substring(1);

str = "Sally";

str2 = str.substring(l, 2);

Jast = str.substring(
length(Q) - 1);

Result

stris set to "Java"

Prints

Please enter your name:

teamis set to "49ers"

first contains "Harry"
Tast contains "Morgan"

nissetto5
chissetto 'a’
str2issctto "all"

str2issetto "ally”

str2issetto"a

last is set to the string
containing the last
character in str

String Operations

Comment

When applied to strings,
+denotes concatenation.

Usc concatenation to break up strings
that don’t fitinto one line.

Because "ers" is a string, 49 is converted
to a string.

The next method places the next word
into the string variable.

Each space counts as one character.

This is a char value, not a String. Note
that the initial position is 0.

Extracts the substring starting at
position 1 and ending before position 4.

If you omit the end position, all
characters from the position until the
end of the string are included.

Extracts a String of length
1; contrast with str.charAt(1).

The last character has position
str.length() - 1.

41

