
Advanced Computer Programming
[Lecture 02]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1

Variables

When your program carries out computations, you will want to
store values so that you can use them later.

In a Java program, you use variables to store values.

Example of variable declaration:

int number = 6;

Definition
A variable is a storage location in a computer program. Each variable
has a type, name, and holds a value.

2

Variables

When your program carries out computations, you will want to
store values so that you can use them later.

In a Java program, you use variables to store values.

Example of variable declaration:

int number = 6;

Definition
A variable is a storage location in a computer program. Each variable
has a type, name, and holds a value.

2

Variables

Syntax
Variable declaration:

typeName variableName = value;, or

typeName variableName;

You usually specify an initial value.
You also specify the type (size) of its values.

Java supports quite a few data types: numbers, text strings, files,
dates, and many others.

After you have declared and initialized a variable, you can use it
int number = 10;
System.out.println(number);
int product = 4 * number;

3

Variables

Real-world example: Parking space

4

Variables

Some programming examples:

5

Type of Variables

Type = Size + Operations

6

Number Types

Two most commonly used number types:

int: for integer numbers.
int number = 10;

double: for floating-point numbers.
double number2 = 10.55;

Definition
Numeral value that occurs in a Java program is called a number
literal.
int number = 10;
double number2 = 10.55;

7

Number Types

Two most commonly used number types:

int: for integer numbers.
int number = 10;

double: for floating-point numbers.
double number2 = 10.55;

Definition
Numeral value that occurs in a Java program is called a number
literal.
int number = 10;
double number2 = 10.55;

7

Number Literals

8

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

Variable names are case sensitive.

You cannot use reserved words such as double or int as names
(Appendix C).

9

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

Variable names are case sensitive.

You cannot use reserved words such as double or int as names
(Appendix C).

9

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

Variable names are case sensitive.

You cannot use reserved words such as double or int as names
(Appendix C).

9

Variable Name

When you declare a variable, you should pick a name that explains its
purpose.
In Java, there are a few simple rules for variable names:

Variable names must start with a letter or the underscore ()
character, and the remaining characters must be letters,
numbers, or underscores.

Spaces are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack (camel casing).

Variable names are case sensitive.

You cannot use reserved words such as double or int as names
(Appendix C).

9

Variable Name

10

The Assignment Statement
You use the assignment statement to place a new value into a
variable. That value is stored in the variable,
overwriting its previous contents.

variableName = value;
(direction is important)

Note
Assignment is different from variable declaration;

Variable declaration (an instruction to create a new variable of an
specific type)
int number = 10;

Assignment statement (an instruction to replace the contents of
the existing variable with another value)
number = 100;

11

The Assignment Statement
You use the assignment statement to place a new value into a
variable. That value is stored in the variable,
overwriting its previous contents.

variableName = value;
(direction is important)

Note
Assignment is different from variable declaration;

Variable declaration (an instruction to create a new variable of an
specific type)
int number = 10;

Assignment statement (an instruction to replace the contents of
the existing variable with another value)
number = 100;

11

The Assignment Statement

12

Constants

Definition
When a variable is defined with the reserved word final, its value can
never change, so it is a constant.

Constants are commonly written using CAPITAL letters to be
distinguished.

13

Comments

Definition
As your programs get more complex, you should add comments,
explanations for human readers of your code. The compiler
does not process comments at all.

Types of commenting:

Line: //comment begins to the end of line

Block: /*all comments in between*/

14

Example

15

Common Error

Using Undeclared or Uninitialized Variables

You must declare a variable before you use it for the first time.

A related error is to leave a variable uninitialized.

16

Numeric Types in Java

17

Problems with Binary Representation

Overflow
Because numbers are represented in the computer with a limited
number of digits, they cannot represent arbitrary numbers.

output: 705032704

Roundoff
As with decimal numbers, you can get roundoff errors when
binary digits are lost.

18

Problems with Binary Representation

Overflow
Because numbers are represented in the computer with a limited
number of digits, they cannot represent arbitrary numbers.

output: 705032704

Roundoff
As with decimal numbers, you can get roundoff errors when
binary digits are lost.

18

Arithmetic Operators

All of the four basic arithmetic operators are available here:
addition (+)
subtraction (-)
multiplication (*)
division (/)

Definition
The combination of variables, literals, operators, and/or method calls is
called an expression.
e.g. a + b / 2

19

Arithmetic Operators

Notes
As in regular algebraic notation, multiplication and division have a
higher precedence than addition and subtraction.

Parentheses are used to indicate in which order the parts of the
expression should be computed.

Mixing integers and floating-point values in an arithmetic
expression yields a floating-point value.

20

Increment and Decrement
Changing a variable by adding or subtracting 1 is so common that
there is a special shorthand for it;

Increment: ++ operator
counter++; equals to counter = counter + 1;

Decrement: -- operator
counter--; equals to counter = counter - 1;

21

Combining Assignment and Arithmetic

In Java you can combine arithmetic and assignment:

counter = counter + 10; can be written as:
counter += 10;

counter = counter - 10; can be written as:
counter -= 10;

counter = counter * 10; can be written as:
counter *= 10;

counter = counter / 10; can be written as:
counter /= 10;

22

Integer Division and Remainder

Division works as you would expect, as long as at least one of the
numbers involved is a floating-point number.
7.0/4 = 7/4.0 = 7.0/4.0 = 1.75

If both numbers are integers, then the
result of the division is always an integer, with the
remainder discarded.
7/4 = 1

If you are interested in the remainder only, use the % operator.
7 % 4 = 3

23

Variable Swapping

Q & A
Q: How can we swap the values of two variables?

A: Using a temporary variables;
int a = 10;
int b = 20;
int c = a;
a = b;
b = c;
Q: Can we swap integer values without a temporary variable?
A: Your task!

24

Variable Swapping

Q & A
Q: How can we swap the values of two variables?
A: Using a temporary variables;
int a = 10;
int b = 20;
int c = a;
a = b;
b = c;

Q: Can we swap integer values without a temporary variable?
A: Your task!

24

Variable Swapping

Q & A
Q: How can we swap the values of two variables?
A: Using a temporary variables;
int a = 10;
int b = 20;
int c = a;
a = b;
b = c;
Q: Can we swap integer values without a temporary variable?
A: Your task!

24

Power and Roots

In Java, there are no symbols for powers and roots.

To take the square root of a number, you use the Math.sqrt√
x equals to Math.sqrt(x)

To compute xn you write Math.pow(x,n).

In Java you should write linear mathematic expressions. e.g.

b×
(
1+ r

100

)n

should be written as

b * Math.pow(1 + r / 100, n)

25

The Math Library

26

Converting Floting-Point Numbers to Integers

You have a value of type double that you need to convert to the type
int.

It is an error to assign a floating-point value to an integer.

The compiler disallows this assignment because it is potentially
dangerous:

The fractional part is lost.
The magnitude may be too large.

You must use the cast operator to convert a convert
floating-point value to an integer.

27

Converting Floting-Point Numbers to Integers

You have a value of type double that you need to convert to the type
int.

It is an error to assign a floating-point value to an integer.

The compiler disallows this assignment because it is potentially
dangerous:

The fractional part is lost.
The magnitude may be too large.

You must use the cast operator to convert a convert
floating-point value to an integer.

27

Cast Operator

28

Input and Output

Output

System.out.println(arg);

System.out.print(arg);

Input

An Scanner must be created first
Scanner in = new Scanner(System.in);

To use Scanner, the package java.util.Scanner must be
imported
import java.util.Scanner;

Use next... methods to read inputs, e.g.
int number = in.nextInt();

29

Reading Input

30

Formatted Output

When you print the result of a computation, you often want to control
its appearance. For example:

Rounding to a number of significant digits.
(System.out.printf("%.2f", price);)

Specifying a field width.
(System.out.printf("%10.2f", price);)

Use the printf method and format specifiers to specify how
values should be formatted,

%...f, formating a floating-point number.

%...d, formating an integer number.

%...s, formating a string.

31

Formatted Output

When you print the result of a computation, you often want to control
its appearance. For example:

Rounding to a number of significant digits.
(System.out.printf("%.2f", price);)

Specifying a field width.
(System.out.printf("%10.2f", price);)

Use the printf method and format specifiers to specify how
values should be formatted,

%...f, formating a floating-point number.

%...d, formating an integer number.

%...s, formating a string.

31

Format Specifiers

32

Format String
Definition
A format string is a string contains format specifiers and
literal characters. Any characters that are not format specifiers are
printed verbatim.

Examples:
System.out.printf("Price per liter:%10.2f", price);
Price per liter: 1.22
System.out.printf("Quantity: %d Total: %10.2f",
quantity, total);

33

Strings

Many programs process text, not numbers.

Definition
A string is a sequence of characters, characters like letters, numbers,
punctuation, spaces, and so on.

Declaring a variable that can hold strings:

String name = "Harry";

String variable: A variable that can hold a string.

String literal: Character sequences enclosed in quotes.

Length of string: The number of characters in a string.
int n = name.length();

Empty string: A string of length zero ("").

34

Strings

Many programs process text, not numbers.

Definition
A string is a sequence of characters, characters like letters, numbers,
punctuation, spaces, and so on.

Declaring a variable that can hold strings:

String name = "Harry";

String variable: A variable that can hold a string.

String literal: Character sequences enclosed in quotes.

Length of string: The number of characters in a string.
int n = name.length();

Empty string: A string of length zero ("").

34

Concating Strings

In Java, you use the + operator to concatenate two strings.
For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + lName;

results in the string
"Harry Morgan"

35

Concating Strings

In Java, you use the + operator to concatenate two strings.
For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + lName;

results in the string
"Harry Morgan"

35

Concating Strings

In Java, you use the + operator to concatenate two strings.
For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + lName;

results in the string
"Harry Morgan"

35

Concating Strings

In Java, you use the + operator to concatenate two strings.
For example:

String fName = "Harry";
String lName = "Morgan";
String name = fName + lName;

results in the string
"HarryMorgan"

You can concatenate multiple strings
String name = fName + " " + lName;

results in the string
"Harry Morgan"

35

Concating Strings

When the expression to the left or the right of a + operator is a
string, the other one is automatically forced to become a string as
well.
String jobTitle = "Agent";
int employeeId = 7;
String bond = jobTitle + employeeId;
bond’s value will be "Agent7".

concatenation is very useful for reducing the number of
System.out.print instructions.
System.out.println("The total is " + total);

36

String Input

You can read a string from the console:
String name = in.next();
where in is a scanner.

Note
When a string is read with the next method, only one word is read.

37

Escape Sequences

Definition
Escape sequences are used to represent certain special characters
within string literals and character literals.

Common examples:

Include a quotation mark:
"He said \"Hello\""
Include a backslash:
"C:\\Temp\\Secret.txt"
Printing a newline (useful with printf):
System.out.print("*\n**\n***\n");
Prints the characters
*
**

38

Escape Sequences

Definition
Escape sequences are used to represent certain special characters
within string literals and character literals.

Common examples:

Include a quotation mark:
"He said \"Hello\""
Include a backslash:
"C:\\Temp\\Secret.txt"
Printing a newline (useful with printf):
System.out.print("*\n**\n***\n");
Prints the characters
*
**

38

Strings and Characters

Strings are sequences of characters, each has a position starting
from 0 to its length - 1.
In Java, a character is a value of the type char.
Character literals are delimited by single quotes, and you should
not confuse them with strings.

’H’ is a character, a value of type char.
”H” is a string containing a single character, a value of type
String.

The charAt method returns a char value from a string.
String name = "Harry";
char start = name.charAt(0);
char last = name.charAt(4);

39

Strings and Characters

Strings are sequences of characters, each has a position starting
from 0 to its length - 1.
In Java, a character is a value of the type char.
Character literals are delimited by single quotes, and you should
not confuse them with strings.

’H’ is a character, a value of type char.
”H” is a string containing a single character, a value of type
String.

The charAt method returns a char value from a string.
String name = "Harry";
char start = name.charAt(0);
char last = name.charAt(4);

39

Substrings

Once you have a string, you can extract substrings by using the
substring method.
str.substring(start, pastEnd);

Example:
String greeting = "Hello, World!";
String sub = greeting.substring(0, 5);
// sub is "Hello"

40

String Operations

41

